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Abstract— On Line Analytical Processing (OLAP) is a technol-
ogy basically created to explore data cubes and detect relevant
information. Unfortunately, in huge and sparse data volumes,
exploration becomes a tedious task. In such a case, simple user’s
intuition or experience does not always lead to efficient results.
In this paper, we propose to exploit the Multiple Correspondence
Analysis (MCA) in order to assist exploration of cubes by
enhancing their space representations. MCA is a factorial method
that maps associations of huge number of categorical variables
and displays them within an appropriate space representation.
Our approach uses test-values provided by MCA in order to
detect and arrange OLAP facts in a large and sparse data cube
within an interesting visual effect which gathers full cells in
relevant regions and separates them from empty cells. Thus, it is
possible to focus analysis on interesting facts by browsing directly
the provided regions in the data cube.

I. INTRODUCTION

On-Line Analytical Processing (OLAP) is a technology
supported by most data warehousing systems [1], [2]. It
provides a platform for analyzing data according to multiple
dimensions and multiple hierarchical levels. Data are presented
in multidimensional views, commonly called data cubes [3].
A data cube can be considered as a space representation com-
posed by a set of cells. A cell is associated with one or more
measures and identified by coordinates represented by one
attribute from each dimension. Each cell in a cube represents
a precise fact. For example, if dimensions are products, stores
and months, the measure of a particular cell can be the sales
of one product in a particular store on a given month. OLAP
provides users with visual tools to summarize, explore and
navigate into data cubes in order to detect interesting and
relevant information. However, exploring a data cube is not
always an easy task to perform. Obviously, in large cubes
containing sparse data, the whole analysis process becomes
tedious and complex. In such a case, an intuitive exploration
based on user’s experience does not quickly lead to efficient
results. Current OLAP provides query-driven and visual tools
to browse data cubes, but does not deeply assist users and help
them to investigate interesting patterns.

For example, consider the cube of Figure 1. On the
one hand, representation 1(a) displays sales of products
(P1, . . . , P10) crossed by geographic locations of stores
(L1, . . . , L8). In this representation, full cells (gray cells) are
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Fig. 1. Two representations of a data cube.

displayed randomly according to lexical order of members
– also called attributes – of each dimension. The way the
cube is displayed does not provide an attractive representation
that visually helps a user to interpret and analyze data. On
the other hand, Figure 1(b) contains the same information as
Figure 1(a). However, it displays a data representation visually
easier to analyze. Figure 1(b) expresses important relationships
by providing a visual representation that gathers full cells
together and separates them from empty cells. In a natural
way, such a representation is more comfortable and allows
to drive easy and efficient analysis. Nevertheless, note that
representation (b) of Figure 1 may be interactively constructed
from representation (a) via classic OLAP operators. However,
this suppose that we intuitively know how to arrange attributes
of each dimension. Hence, we propose an automatic assistance
to identify interesting facts and arrange them in a suitable
visual representation.

As shown in Figure 1, we propose an approach that enables
relevant facts expressing interesting relationships and displays
them in an appropriate way which enhances the exploration
process independently of the cube’s size. We suggest to
carry out a Multiple Correspondence Analysis [4] (MCA)
on data cubes as a preprocessing step. Basically, MCA is
a powerful describing method even for huge volumes of
data. It factors categorical variables and displays data in a
factorial space constructed by orthogonal system of axes that
provides relevant views of data. These elements motivate us
to exploit MCA in order to enhance exploration of large data
cubes by identifying and arranging their interesting facts. We



focus on relevant OLAP facts associated with characteristic
attributes (variables) given by the factorial axes. These facts
are interesting since they reflect relationships and concentrate
a significant information. We highlight these facts and arrange
their attributes in the data space representation by using test-
values [5].

This paper is organized as follows. In section II, we provide
a formalization and a general framework to define notations
and the goal of our approach. We detail, in section III, the
steps we follow to apply MCA on a multidimensional structure
(data cube). Section IV introduces test-values and details how
we use them to detect relevant facts in a data cube. We
propose a case study of our approach on a real world data
cube in section V. In section VI, we present some related
work. Finally, we conclude and propose some future works.

II. PROBLEM FORMALIZATION

Let C denotes a data cube. We emphasize that our approach
can be applied directly on C or on a data view (a sub-
cube) extracted from C. It is up to users to select dimensions,
fix one hierarchical level per dimension and select measures
in order to create a particular data view to organize. Our
approach can be applied on the constructed sub-cube. In the
followings, in order to facilitate our formalization, we assume
that a user has selected a data cube C with d dimensions
(D1, . . . , Dt, . . . , Dd), m measures (M1, . . . ,Mq, . . . ,Mm),
and n facts. We also assume that one hierarchical level, with
pt categorical attributes, is fixed per dimension. p =

∑d
t=1 pt

is the the total number of attributes in C. We suppose that
at

j is the jth attribute of dimension Dt, and we assume that
for each dimension Dt, {at

1, . . . , a
t
j , . . . , a

t
pt
} is the set of its

attributes.

The objective of our proposal is to detect from the initial
cube C relevant facts expressing interesting relationships. In
order to do so, we propose to select from each dimension
Dt subsets of characteristic attributes Φt. These attributes
give a specific interpretation for factorial axes of a MCA [4],
[5] built over the whole set of cube’s facts. The crossing
of these attributes enables the identification of relevant cells.
Indeed, MCA is a factorial method that displays categorical
variables in a property space which maps their associations
in two or more dimensions. From a table of n observations
(rows) on p categorical variables (columns), describing a p-
dimensional cloud of individuals (p < n), MCA provides
orthogonal axes to describe the most variance of the whole data
cloud. The fundamental idea is to reduce the dimensionality
of the original data thanks to a reduced number of variables
– commonly called factors – which are a combination of the
original variables. MCA is generally used as an exploratory
approach to unearth empirical regularities of a dataset. In
our case, OLAP facts represent individuals of MCA, cube’s
dimensions represent variables of MCA, and the attributes of
a dimension represent values of variables.

Id D1 D2 D3 M1
1 L1 T2 P1 9
2 L2 T2 P3 5
3 L2 T1 P2 6
4 L1 T1 P3 7

Z
Z1 Z2 Z3

Id L1 L2 T1 T2 P1 P2 P3
1 1 0 0 1 1 0 0
2 0 1 0 1 0 0 1
3 0 1 1 0 0 1 0
4 1 0 1 0 0 0 1

(a) (b)

Fig. 2. Example of a conversion of a data cube to a complete disjunctive
table.

III. APPLYING MCA ON A DATA CUBE

Like all statistical methods, MCA needs a tabular repre-
sentation of data as input. Therefore, we can not apply it
directly on multidimensional representations like data cubes.
Therefore, we need to convert C to a complete disjunctive
table. For each dimension Dt, we generate a binary matrix
Zt with n rows and pt columns. Rows represent facts, and
columns represent dimension’s attributes. The ith row of Zt

contains (pt − 1) times the value 0 and one time the value 1
in the column that fits with the attribute taken by the fact i.
The general term of Zt is:

zt
ij =

{
1 if the fact i takes the attribute at

j

0 else
(1)

By merging the d matrices Zt, we obtain a complete
disjunctive table Z = [Z1, Z2, . . . , Zt, . . . , Zd] with n rows
and p columns. It describes the d positions of the n facts of C
through a binary coding. For instance, Figure 2 shows a simple
example of a data cube (a), with 3 dimensions D1 : {L1, L2},
D2 : {T1, T2}, and D3 : {P1, P2, P3}. This cube is converted
to a complete disjunctive table Z in Figure 2(b). In the case
of a large data cube, we naturally obtain a very huge matrix
Z. Recall that MCA is a factorial method perfectly suited to
huge input dataset with high numbers of rows and columns.

Once complete disjunctive table Z is built, MCA starts by
constructing a matrix B = Z ′Z – called Burt table –, where
Z ′ is the transposed matrix of Z. Burt table B is a (p, p)
symmetric matrix which contains all the category marginal
on the main diagonal and all possible cross-tables of the d
dimensions of C in the off-diagonal. Let X be a (p, p) diagonal
matrix which has the same diagonal elements of B and zeros
otherwise. According to the Z table of Figure 2(b), the matrix
B and X are written as follow:

B = Z ′Z =




2 0 1 1 1 0 1
0 2 1 1 0 1 1
1 1 2 0 0 1 1
1 1 0 2 1 0 1
1 0 0 1 1 0 0
0 1 1 0 0 1 0
1 1 1 1 0 0 2






X =




2 0 . . . 0
0 2 . .
. . 2 . .
. . 2 . .
. . 1 . .
. . 1 0
0 . . . 0 2




We construct from Z and X a new matrix S according to
the formula:

S =
1
d
Z ′ZX−1 =

1
d
BX−1 (2)

By diagonalizing S, we obtain (p − d) diagonal elements,
called eigenvalues and denoted λα. Each eigenvalue λα is as-
sociated to a directory vector uα and corresponds to a factorial
axis Fα, where Suα = λαuα. The algorithm CubeToMCA
of Figure 3 illustrates the previous process. This algorithm
creates a complete disjunctive table from an input cube C,
applies MCA on C, and returns eigenvalues in output.

Algorithm CubeToMCA(C)
Input:
C: data cube

Begin
for (t = 1; t ≤ p; t + +) do

Zt ← 0;
for each attribute at

j in Dt do
for each fact i in C do

if (fact i takes at
j ) then

zt
ij ← 1;

Break for;
end if

end for
end for
Z ← merge(Z,Zt);

end for
B ← ZZ′;
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ p; j + +) do
if (i �= j) then

xij ← 0;
else xij ← bij ;

end if
end for

end for
S ← 1

d Z′ZX−1;
S ← diagonalize(S);
for (α = 1; α ≤ p− d; α + +) do

λα ← sαα;
end for

End

Fig. 3. Algorithm CubeToMCA.

An eigenvalue represents the amount of inertia (variance)
that reflects the relative importance of its axis. The first axis
always explains the most inertia and has the largest eigenvalue.
Usually, in a factorial analysis process, researchers keep only
the first, two or three axes of inertia. Other researchers give
complex mathematical criterion [6], [7], [8], [9] to determine
the number of axes to keep. In [4], Benzecri suggests that this
limit should be fixed by user’s capacity to give a meaningful
interpretation to the axes he keeps. It is not because an axis
has a relatively small eigenvalue that we should discard it. It
can often help to make a fine point about the data. It is up to
the user to choose the number k of axis to keep by checking
eigenvalues and the general meaning of axes.

IV. USING TEST-VALUES TO CHARACTERIZE AXIS

Constructed factorial axes can be characterized by attributes
coming from initial OLAP dimensions. In a factorial analysis,
relative contributions of variables are usually used to give
sense to factorial axes. A relative contribution shows the
percent of inertia of a particular axis explained by an attribute.
The larger relative contribution of a variable to an axis is, the
more it gives sense of this axis. In our approach, we choose to
characterize the k selected factorial axes by using test-values
proposed by Lebart et al. in [5].

Let I(at
j) be the set of facts having at

j as attribute in the
dimension Dt. nt

j is the number of elements in I(at
j). n

t
j

corresponds to the number of facts in C having at
j as attribute

(weight of at
j in the cube).

nt
j = Card(I(at

j)) =
n∑

i=1

zt
ij (3)

We consider ψαi the coordinate of fact i according to the
axis Fα. Therefore, the coordinate of the attribute at

j according
to Fα is:

ϕt
αj =

1
nt

j

√
λα

∑
i∈I(at

j)

ψαi (4)

Under a null hypothesis H0, if the nt
j facts are selected

randomly in the set of n facts, the mean of their coordinates
in Fα is represented by a random variable Y t

αj :

Y t
αj =

1
nt

j

∑
i∈I(at

j)

ψαi (5)

where its mean is E(Y t
αj) = 0, and its variance is:

VARH0(Y
t
αj) =

n− nt
j

n− 1
λα

nt
j

(6)

Knowing that ϕt
αj = 1√

λα
Y t

αj , the mean of ϕt
αj is

therefore equal to zero (E(ϕt
αj) = 0) and its variance is:

VARH0(ϕ
t
αj) =

n− nt
j

n− 1
1
nt

j

(7)

Therefore, the test-value of at
j is written as follows:

V t
αj =

√
nt

j

n− 1
n− nt

j

ϕt
αj (8)

V t
αj measures the number of standard deviations between

the attribute at
j (the gravity center of nt

j facts) and the center
of factorial axis Fα. The position of an attribute is interesting
for a given axis Fα since its facts’ cloud is located in a narrow
zone in direction α. This zone should also be as far as possible
from the center of the axis. The test-value is a criterion that
quickly provides an appreciation wether an attribute has a
significant position on a given factorial axis. These elements
motivate us to use test-values to characterize factorial axes
provided by MCA.



In general, an attribute is considered significant for an axis
if the absolute value of its test-value is higher than τ = 2.
This corresponds roughly to an error threshold of 5%. We
note that a low error threshold corresponds to a high value
of τ . In our case, for one attribute, the test confidence of
hypothesis H0 can be affected by a possible error. This error
will increase by performing p tests for all the cube attributes.
In order to minimize this accumulation of errors, we propose
to fix an error threshold of 1% which correspond to τ = 3.
We also emphasize that a given axis can be characterized by
too much attributes according to their test-values. Therefore,
instead of taking all these attributes, we can consider only
a subset of most characteristic ones. We select those having
the highest absolute test-values. Finally, in order to detect
interesting facts in a data cube, for each dimension Dt, we
select in the following set the most characteristic attributes.

Φt ⊆
{
at

j , where ∀ j ∈ {1, . . . , pt},
∃ α ∈ {1, . . . , k} such as |V t

αj | ≥ 3

}
(9)

V. A CASE STUDY

To test and validate our approach, we apply it on a 5-
dimensional cube (d = 5) constructed from the Census-Income
Database1 of the UCI Knowledge Discovery in Databases
Archive2. Basically, this database contains weighted census
data extracted from the 1994 and 1995 current population
surveys conducted by the U.S. Census Bureau about demo-
graphic and employment related variables. The constructed
cube contains 199 523 facts where each fact represents a
particular profile of a sub population measured by Wage per
hour. Table I details the cube’s dimensions.

Dimension pt

D1 : Education level p1 = 17
D2 : Professional category p2 = 22
D3 : State of residence p3 = 51
D4 : Household situation p4 = 38
D5 : Country of birth p5 = 42

TABLE I

DIMENSIONS OF THE Census-Income’S CUBE.

According to the binary coding of Equation (1), the Census-
Income data cube is converted to a complete disjunctive table
Z = [Z1, Z2, Z3, Z4, Z5]. Z contains 199 523 rows and
p =

∑5
t=1 pt = 170 columns. MCA provides p − d = 165

factorial axes Fα from Z. Figure 4 displays the first factorial
plane (first and second axis) provided by MCA. Each axis is
associated to an eigenvalue λα. Suppose that, according to the
histogram of eigenvalues, a user chooses the three first axes
(k = 3). These axes explain 15.35% of the total inertia of the
facts cloud. This contribution does not seem very important at
a first sight. But we should also note that in a case of a uniform
distribution of eigenvalues, we normally get a contribution

1http://kdd.ics.uci.edu/databases/census-income/census-income.html
2http://kdd.ics.uci.edu/

of 1
p−d = 0.6% per axis, i.e., the three first axes represent

an inertia already 25 times more important than a uniform
distribution.

Factor 1

Fa
ct

o
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Fig. 4. First factorial plane constructed by MCA.

The organized Census-Income data cube is obtained by
sorting the attributes of its dimensions. For each dimension Dt

its attributes are sorted according to the increasing values of
V t

1j , then according to V t
2j , and then according to V t

3j . Table II
shows the new attributes’ order of the Professional category
dimension (D2). Note that j is the index of original alphabetic
order of attributes. This order has changed according to a sort
of test-values. In Figures 5 and 6, we can clearly see the visual
effect of this arrangement of attributes. These figures display
views of data by crossing the Professional category dimension
on columns (D2) and the Country of birth dimension on rows
(D5). Representation 5 displays the initial view according to
the alphabetic order of attributes, whereas representation 6
displays the same view where attributes are rather sorted
according to their test-values.

Remember that the objective of our approach is not to
compress or reduce the dimensions of a data cube. We do
not also reduce sparsity of a data representation. Nevertheless,
we act on this sparsity and reduce its negative effect on
OLAP interpretation. Thus, we arrange differently original
facts within a visual effect that gathers them as well as possible
in the space representation of the data cube. At a first sight,
the visual representation 6 is more suitable to interpretation
than representation 5. We clearly distinguish in Figure 6 four
dense regions of full cells.

According to Equation (9), for each t ∈ {1, . . . , 5}, we
select from Dt the set of characteristic attributes for the three
selected factorial axes. These characteristic attributes give
the best semantic interpretation of factorial axes and express
strong relationships for their corresponding facts. To avoid
great number of possible characteristic attributes per axis, we
can consider, for each axis, only the first 50% of attributes
having the highest absolute test-values. For instance, in the
Professional category dimension D2, the set Φ2 of character-



Test-values
j Attributes V 1

1j V 1
2j V 1

3j

9 Hospital services -99.90 -99.90 -99.90
14 Other professional services -99.90 -99.90 99.90
17 Public administration -99.90 -99.90 99.90
12 Medical except hospital -99.90 99.90 -99.90
5 Education -99.90 99.90 99.90
7 Finance insurance -99.90 99.90 99.90

19 Social services -99.90 99.90 99.90
8 Forestry and fisheries -35.43 -8.11 83.57
3 Communications -34.05 -99.90 99.90

15 Personal services except private -21.92 -5.50 10.28
13 Mining -6.59 -99.64 -5.25
16 Private household services 7.77 51.45 11.68
6 Entertainment 40.04 99.90 96.23
1 Agriculture 68.66 3.39 -27.38
4 Construction 99.90 -99.90 -99.90

10 Manufact. durable goods 99.90 -99.90 -99.90
11 Manufact. nondurable goods 99.90 -99.90 -99.90
21 Utilities and sanitary services 99.90 -99.90 -99.90
22 Wholesale trade 99.90 -99.90 -24.37
20 Transportation 99.90 -99.90 99.90
18 Retail trade 99.90 99.90 -99.90
2 Business and repair 99.90 99.90 99.90

TABLE II

ATTRIBUTE’S TEST-VALUES OF Professional category DIMENSION.

istic attributes corresponds to those grayed in Table II:

Φ2 =




Hospital services, Other professional services,
Public administration, Medical except hospital,
Education, Finance insurance, Social services,
Forestry and fisheries, Communications,
Entertainment, Agriculture Construction,
Manufact. durable goods,
Manufact. nondurable goods,
Utilities and sanitary services, Wholesale trade,
Transportation, Retail trade,
Business and repair services




In the same way, we apply the test of Equation (9) on
other dimensions. In Figure 6, we clearly see that the zones of
facts corresponding to characteristic attributes of dimensions
D2 and D5 seem to be more interesting and denser than
other regions of the data space representation. These zones
contain relevant information and reflect interesting association
between facts. For instance, we can easily note that industrial
and physical jobs, like construction, agriculture and manu-
facturing are highly performed by Native Latin Americans
from Ecuador, Peru, Nicaragua and Mexico. Asians people
from India, Iran, Japan and China are rather concentrated in
commerce and trade activities.

VI. RELATED WORK

Several works have already treated the issue of enhancing
space representations of data cubes. These works were un-
dertaken following different motivations and adopted different
ways to address the problem. While some are interested to
technical optimization (storage space, queries response time,
etc.), others have rather focused on OLAP aspects. Our present
work fits into the second category. Recall that, in our case, we
focus on assisting OLAP users in order to improve and help
analysis processes on large and sparse data cubes. We use a

factorial approach to highlight relevant facts and provide data
representations interesting for analysis. Nevertheless, we dress
an overview of main studies as well in the first as in the second
category of works.

In [10], Vitter et al. proposed to build compact data cubes by
using approximation through wavelets. Another data structure,
called Quasi-Cube [11], compresses data representation
by materializing only sufficient parts of a data cube, the
remaining parts are approximated by a linear regression.
In [12] approximation is performed by statistical techniques
to estimate the density function of data. Method Dwarf [13]
reduces the storage space of a data cube by identifying and
factoring redundant tuples in the fact’s table. Wang et al.
propose to factorize these redundancies by exploiting the
notion of BST [14] (Base Single Tuple). Therefore, a more
condensed data cube (MinCube) was proposed. In [15],
Feng et al. introduce PrefixCube, a data structure con-
structed upon only one BST by an initial cube dimension. The
Quotient Cube [16] summarizes semantic contents of a
data cube and partitions it into cells with identical values. The
best partition corresponds to the minimal lattice structure that
allows to browse the reduced cube. In [17], Quotient Cube
was involved and a newer data structure, QC-Tree, was
proposed. QC-Tree is directly constructed from the base
table in order to maintain it under updates. Feng et al. [18]
propose the Range CUBE method to compute and compress
a data cube without loss of precision. This method identifies
correlation in attributes values and compress the input dataset
to reduce the computational cost. Ross and Srivastava [19]
addressed the cube representation problem in the case of
sparse data. They propose a new algorithm, Partitioned-
Cube, based on partitioning large relations into fragments to
fit in memory. Operations over the whole cube are performed
on each memory-sized fragment independently. In [20], high
dimensional datasets are partitioned into a set of disjoint low
dimensional datasets also called fragments. For each fragment,
a local data cube is computed offline and used to compute
queries in an online fashion.

Finally, our approach shares already the same motivation of
Choong et al [21]. Authors also address the problem of high
dimensionality of data cubes. They try to enhance analysis
processes by preparing datasets into appropriate representa-
tions. Thus, a user can explore it in a more effective manner.
The authors use an approach that combines association rules
algorithm and a fuzzy subsets method. Their approach consists
in identifying blocks of similar measures in the data cube.
However, this approach does not take into account the problem
of data sparsity and considers only integer measures.

We emphasize that our approach does not deal with the
issues of data cube compression, reduction of dimensionality
or optimization of storage space. Through this study, we try
to act on sparsity in huge multidimensional representations.
We do not to reduce it, but we reduce its negative effects
on interpretations and OLAP analysis of data. Thus, we use
MCA to arrange differently facts and highlight their relevant
relationships in a data cube within a visual effect that gathers
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Japan 107.1 63.5 425.0 192.1 678.9 50.9 164.6 26.4 150.0 273.3 107.5

Laos 500.0 116.6 350.0 71.4

Mexico 34.5 89.6 75.0 95.0 155.2 46.5 67.6 122.2 61.9 59.8 89.7 159.1 59.9 17.1 52.9 40.3 140.3 121.7 82.1

Nicaragua 159.5 83.3 140.0 47.6 340.0 76.5 65.6 74.1 160.0 178.3 81.0 85.7

Outlying-U S ### 93.8 200.0

Panama 452.5

Peru 225.0 699.6 69.7 106.3 47.0 450.0 166.7 215.4 76.2 134.5 127.3 124.2 86.4 20.0 32.0

Philippines 200.0 122.7 265.0 270.0 317.8 62.5 165.0 331.1 66.7 166.1 95.6 77.8 134.7 197.3 322.7

Poland 252.9 175.6 105.0 325.0 185.5 92.6 175.2 180.0 196.2 187.5 212.5

Portugal 166.7 155.6 107.1 141.1 236.7

Puerto-Rico 87.8 250.0 54.2 66.7 80.7 250.0 37.5 122.3 48.3 420.7 40.0 110.1 23.9 43.5 163.8 142.9 33.6

Scotland 87.5 725.0 300.0 785.0 95.2 14.0 23.9 131.3 350.0 173.6 700.0 36.5

South Korea 870.0

Taiwan 46.2

Thailand 150.0 43.8

Trinadad&Tobago 66.3 243.8 63.8 920.0 333.3 89.3 466.7 175.0 453.0 200.0 250.0

United-States 37.8 92.6 153.4 130.6 75.4 117.9 71.1 84.3 214.4 165.4 146.9 141.7 76.0 142.1 99.3 96.0 157.0 199.9 84.4

Vietnam ### 75.0 327.5 173.8 250.0 32.1

Yugoslavia 42.1

Fig. 5. Initial data representation of the Census-Income’s data cube.

them as well as possible in the data space representation.

VII. CONCLUSION

In this paper we introduced an approach to enhance the
space representation of large and sparse data cubes. This
approach enables an assistance to OLAP users and helps to
explore huge volumes of data. Indeed, our approach identi-
fies and highlights interesting facts and displays them in an
appropriate representation by exploiting results of MCA. This
representation provides better property for data visualization
since it gathers full cells expressing interesting relationships
of data. Interesting facts are associated to characteristic at-
tributes selected from the cube’s dimensions. These attributes
are detected according to their test-values on factorial axes.

Furthermore, interesting facts are gathered together in the
data representation space. This can solve the problem of high
dimensionality, sparsity of data, and allows to concentrate
navigation of data on regions containing relevant information.

Some extensions are possible to improve our approach. In
our future works, we intend to construct a criterion to measure
the quality of a data cube representation. This criterion may
enable evaluation of the performance of our approach. We
also plan to perform experiments over different configurations
of data cubes in order to study the efficiency of our method
according to sparsity, number of cells, number of dimensions,
and number of facts.

Currently, we are also studying some possible extensions for
this work. We consider the problem of optimizing complexity
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Philippines 331.1 77.8 95.6 317.8 165.0 265.0 62.5 200.0 270.0 66.7 166.1 322.7 197.3 134.7 122.7

India 157.2 101.2 17.9 228.1 145.9 167.1 81.3 100.0 94.2

Canada 253.1 22.2 169.2 373.4 54.1 112.5 93.1 182.3 11.1 350.0 267.6 94.0 35.0

Jamaica 343.1 55.6 803.8 106.0 147.0 79.2 604.7 ### 91.7 100.0 250.0 100.0 571.4 19.4 533.3 158.8

Iran 311.1 316.7 66.7 100.0 225.0 160.7 159.0 90.0 95.8

Japan 678.9 63.5 150.0 192.1 425.0 50.9 164.6 107.5 273.3 26.4 107.1

China 336.8 833.8 60.7 50.1 105.0 566.7 622.0 40.7 46.7 64.2 329.0 206.3 21.6

Hong Kong 225.0 590.4 183.3 ### 125.4 190.5 100.0 55.1 484.3 566.7 150.0

Greece 241.7 400.0 257.1 400.0 300.0 150.0 63.6 52.4

Germany 417.2 22.2 108.7 128.6 97.9 200.0 218.9 157.1 152.3 31.7 428.2 253.1 77.9 115.0

Scotland 785.0 300.0 350.0 23.9 725.0 87.5 95.2 14.0 700.0 36.5 173.6 131.3

Poland 325.0 180.0 175.2 105.0 175.6 185.5 92.6 212.5 187.5 196.2 252.9

England 383.0 194.7 136.4 90.2 46.9 198.9 222.7 50.0 418.1 257.1 365.0 26.3 77.9

Haiti 90.0 178.7 80.6 ###

Taiwan 46.2

Panama 452.5

Outlying-U S ### 200.0 93.8

Thailand 150.0 43.8

Italy 80.3 27.8 32.9

Hungary 400.0

Vietnam 327.5 250.0 75.0 ### 32.1 173.8

Holand-Netherlands 21.4

Portugal 141.1 155.6 107.1 166.7 236.7

Yugoslavia 42.1

South Korea 870.0

Honduras 945.0 151.7

Cuba 31.8 19.0 501.5 28.9

France 450.0 394.8 229.0

Cambodia 125.0 750.0

Dominican-Republic 146.0 116.7 75.0 375.0 92.7 38.1 35.1

Laos 350.0 500.0 116.6 71.4

Guatemala 136.2 25.8 121.8 47.5 39.8

Columbia 175.0 80.3 79.0 46.6

Ireland 500.0 100.0 533.3

Trinadad&Tobago 175.0 333.3 200.0 89.3 920.0 66.3 63.8 466.7 250.0 453.0 243.8

Puerto-Rico 37.5 40.0 110.1 420.7 80.7 43.5 250.0 250.0 66.7 54.2 122.3 48.3 142.9 33.6 163.8 23.9 87.8

Ecuador 300.0 265.6 515.0 206.7 175.0 68.8 250.0 100.0 107.2 205.6 128.1 333.3 212.5 41.9 109.1

Peru 166.7 134.5 106.3 47.0 124.2 450.0 69.7 225.0 215.4 76.2 20.0 32.0 86.4 127.3 699.6

Nicaragua 74.1 178.3 65.6 140.0 47.6 83.3 160.0 159.5 340.0 76.5 85.7 81.0

Mexico 122.2 159.1 89.7 155.2 67.6 40.3 75.0 59.9 17.1 46.5 34.5 95.0 61.9 59.8 121.7 82.1 140.3 52.9 89.6

El-Salvador 120.0 81.0 344.0 400.0 79.5 950.8 55.6 36.1 184.7 19.4 365.6 36.9 20.7 46.1

United-States 214.4 76.0 142.1 141.7 75.4 71.1 96.0 84.3 153.4 117.9 37.8 130.6 165.4 146.9 199.9 84.4 157.0 99.3 92.6

Fig. 6. Organized data representation of the Census-Income’s data cube.

of our approach. We also try to involve our approach in order
to take into account the issue of data updates. Finally, we
project to implement this approach under a Web environment.
We choose the Web technology to emphasize on the on line
and interactive aspect of the approach.
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